Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available November 11, 2026
-
The oxidative addition/reductive elimination of polar molecules such as methyl iodide at late metal centers has a strongly supported SN2 mechanism for many key organometallic complexes, including important industrial catalysts. In the reductive elimination direction, it is proposed that a ligand initially dissociates, typically a halide, followed by subsequent nucleophilic attack at the ligand trans to the now vacant site. The prevailing view is the metal reduction occurs upon transferring the electrophile in the SN2 step. Herein, we report the use of an ensemble of computational techniques to characterize the electronic structure of the reactants and intermediates along this reductive elimination pathway. These calculations demonstrate, unexpectedly, that the initiating loss of an anionic ligand from the octahedral highly oxidized structure leads to an electronic rearrangement that shifts electron density from the apical ligand back toward the metal resulting in an inversion of the electron flow between the metal and apical ligand. The anisotropic shift in electron density to the metal disproportionately affects the apical position, which is best described as a Pt → Me dative bond. With this Pt → Me bonding description, our interpretation of the IUPAC oxidation state formalism would assign the intermediate as PtII. Although counterintuitive, the formal and functional reduction of the metal thus occurs upon halide dissociation.more » « less
-
The field of computational molecular sciences (CMSs) has made innumerable contributions to the understanding of the molecular phenomena that underlie and control chemical processes, which is manifested in a large number of community software projects and codes. The CMS community is now poised to take the next transformative steps of better training in modern software design and engineering methods and tools, increasing interoperability through more systematic adoption of agreed upon standards and accepted best-practices, overcoming unnecessary redundancy in software effort along with greater reproducibility, and increasing the deployment of new software onto hardware platforms from in-house clusters to mid-range computing systems through to modern supercomputers. This in turn will have future impact on the software that will be created to address grand challenge science that we illustrate here: the formulation of diverse catalysts, descriptions of long-range charge and excitation transfer, and development of structural ensembles for intrinsically disordered proteins.more » « less
-
Abstract The Molecular Sciences Software Institute (MolSSI) is an National Science Foundation (NSF) funded institute that focuses on improving software, education, and training in the computational molecular sciences. Through a collaboration with the Molecular Education and Research Consortium in Undergraduate computational chemistRY (MERCURY), the MolSSI has developed resources for undergraduate and other early career students to lay an educational foundation for the next generation of computational molecular scientists. The resources focus on introducing best practices in software engineering to students from the very start to make their software more useable, maintainable, and reproducible.more » « less
An official website of the United States government
